TY - JOUR
T1 - Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins
AU - Buhrke, David
AU - Tavraz, Neslihan N.
AU - Shcherbakova, Daria M.
AU - Sauthof, Luisa
AU - Moldenhauer, Marcus
AU - Vélazquez Escobar, Francisco
AU - Verkhusha, Vladislav V.
AU - Hildebrandt, Peter
AU - Friedrich, Thomas
N1 - Funding Information:
The authors thank Mario Willoweit for the help with molecular cloning and Tillmann Utesch for the development of the structure homology model. This work was supported by the German Federal Ministry for Education and Research (BMBF WTZ-RUS grant 01DJ15007 to T.F.), the German Research Foundation (Cluster of Excellence “Unifying Concepts in Catalysis” to P.H. and T.F., and the CRC1078/B6 to P.H.), and the US National Institutes of Health (GM122567 and NS103573 grants to V.V.V.). The authors acknowledge support by the German Research Foundation and the Open Access Publication Funds of Technical University of Berlin for covering publication costs.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Phytochromes are red/far-red light sensing photoreceptors employing linear tetrapyrroles as chromophores, which are covalently bound to a cysteine (Cys) residue in the chromophore-binding domain (CBD, composed of a PAS and a GAF domain). Recently, near-infrared (NIR) fluorescent proteins (FPs) engineered from bacterial phytochromes binding biliverdin IXα (BV), such as the iRFP series, have become invaluable probes for multicolor fluorescence microscopy and in vivo imaging. However, all current NIR FPs suffer from relatively low brightness. Here, by combining biochemical, spectroscopic and resonance Raman (RR) assays, we purified and characterized an iRFP variant that contains a BV chromophore simultaneously bound to two cysteines. This protein with the unusual double-Cys attached BV showed the highest fluorescence quantum yield (FQY) of 16.6% reported for NIR FPs, whereas the initial iRFP appeared to be a mixture of species with a mean FQY of 11.1%. The purified protein was also characterized with 1.3-fold higher extinction coefficient that together with FQY resulted in almost two-fold brighter fluorescence than the original iRFP as isolated. This work shows that the high FQY of iRFPs with two cysteines is a direct consequence of the double attachment. The PAS-Cys, GAF-Cys and double-Cys attachment each entails distinct configurational constraints of the BV adduct, which can be identified by distinct RR spectroscopic features, i.e. the marker band including the C=C stretching coordinate of the ring A-B methine bridge, which was previously identified as being characteristic for rigid chromophore embedment and high FQY. Our findings can be used to rationally engineer iRFP variants with enhanced FQYs.
AB - Phytochromes are red/far-red light sensing photoreceptors employing linear tetrapyrroles as chromophores, which are covalently bound to a cysteine (Cys) residue in the chromophore-binding domain (CBD, composed of a PAS and a GAF domain). Recently, near-infrared (NIR) fluorescent proteins (FPs) engineered from bacterial phytochromes binding biliverdin IXα (BV), such as the iRFP series, have become invaluable probes for multicolor fluorescence microscopy and in vivo imaging. However, all current NIR FPs suffer from relatively low brightness. Here, by combining biochemical, spectroscopic and resonance Raman (RR) assays, we purified and characterized an iRFP variant that contains a BV chromophore simultaneously bound to two cysteines. This protein with the unusual double-Cys attached BV showed the highest fluorescence quantum yield (FQY) of 16.6% reported for NIR FPs, whereas the initial iRFP appeared to be a mixture of species with a mean FQY of 11.1%. The purified protein was also characterized with 1.3-fold higher extinction coefficient that together with FQY resulted in almost two-fold brighter fluorescence than the original iRFP as isolated. This work shows that the high FQY of iRFPs with two cysteines is a direct consequence of the double attachment. The PAS-Cys, GAF-Cys and double-Cys attachment each entails distinct configurational constraints of the BV adduct, which can be identified by distinct RR spectroscopic features, i.e. the marker band including the C=C stretching coordinate of the ring A-B methine bridge, which was previously identified as being characteristic for rigid chromophore embedment and high FQY. Our findings can be used to rationally engineer iRFP variants with enhanced FQYs.
UR - http://www.scopus.com/inward/record.url?scp=85061477197&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061477197&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-38433-2
DO - 10.1038/s41598-018-38433-2
M3 - Article
C2 - 30755663
AN - SCOPUS:85061477197
SN - 2045-2322
VL - 9
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 1866
ER -