TY - JOUR
T1 - Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus
AU - Suzuki, Masako
AU - Maekawa, Ryo
AU - Patterson, Nicole E.
AU - Reynolds, David M.
AU - Calder, Brent R.
AU - Reznik, Sandra E.
AU - Heo, Hye J.
AU - Einstein, Francine Hughes
AU - Greally, John M.
N1 - Funding Information:
The current project is funded by grants to MS from Albert Einstein College of Medicine, Dean’s Office Pilot Project Program, and the Mentored Clinical/ Translational Research Career Development Award, administered by the Einstein/Montefiore Institute for Clinical and Translational Research (ICTR) (KL2). The KL2 program is supported by the National Center for Advancing Translational Sciences (NCATS), a component of the National Institutes of Health (NIH), through CTSA grant numbers UL1TR000086, TL1RR000087, and KL2TR000088.
Publisher Copyright:
© 2016, The Author(s).
PY - 2016/6/10
Y1 - 2016/6/10
N2 - Background: Preeclampsia, traditionally characterized by high blood pressure and proteinuria, is a common pregnancy complication, which affects 2–8 % of all pregnancies. Although children born to women with preeclampsia have a higher risk of hypertension in later life, the mechanism of this increased risk is unknown. DNA methylation is an epigenetic modification that has been studied as a mediator of cellular memory of adverse exposures in utero. Since each cell type in the body has a unique DNA profile, cell subtype composition is a major confounding factor in studies of tissues with heterogeneous cell types. The best way to avoid this confounding effect is by using purified cell types. However, using purified cell types in large cohort translational studies is difficult. The amnion, the inner layer of the fetal membranes of the placenta, is derived from the epiblast and consists of two cell types, which are easy to isolate from the delivered placenta. In this study, we demonstrate the value of using amnion samples for DNA methylation studies, revealing distinctive patterns between fetuses exposed to proteinuria or hypertension and fetuses from normal pregnancies. Results: We performed a genome-wide DNA methylation analysis, HpaII tiny fragment Enrichment by Ligation-mediated PCR (HELP)-tagging, on 62 amnion samples from the placentas of uncomplicated, normal pregnancies and from those with complications of preeclampsia or hypertension. Using a regression model approach, we found 123, 85, and 99 loci with high-confidence hypertension-associated, proteinuria-associated, and hypertension- and proteinuria-associated DNA methylation changes, respectively. A gene ontology analysis showed DNA methylation changes to be selecting genes with different biological processes in exposure status. We also found that these differentially methylated regions overlap loci previously reported as differentially methylated regions in preeclampsia. Conclusions: Our findings support prior observations that preeclampsia is associated with changes of DNA methylation near genes that have previously been found to be dysregulated in preeclampsia. We propose that amniotic membranes represent a valuable surrogate fetal tissue on which to perform epigenome-wide association studies of adverse intrauterine conditions.
AB - Background: Preeclampsia, traditionally characterized by high blood pressure and proteinuria, is a common pregnancy complication, which affects 2–8 % of all pregnancies. Although children born to women with preeclampsia have a higher risk of hypertension in later life, the mechanism of this increased risk is unknown. DNA methylation is an epigenetic modification that has been studied as a mediator of cellular memory of adverse exposures in utero. Since each cell type in the body has a unique DNA profile, cell subtype composition is a major confounding factor in studies of tissues with heterogeneous cell types. The best way to avoid this confounding effect is by using purified cell types. However, using purified cell types in large cohort translational studies is difficult. The amnion, the inner layer of the fetal membranes of the placenta, is derived from the epiblast and consists of two cell types, which are easy to isolate from the delivered placenta. In this study, we demonstrate the value of using amnion samples for DNA methylation studies, revealing distinctive patterns between fetuses exposed to proteinuria or hypertension and fetuses from normal pregnancies. Results: We performed a genome-wide DNA methylation analysis, HpaII tiny fragment Enrichment by Ligation-mediated PCR (HELP)-tagging, on 62 amnion samples from the placentas of uncomplicated, normal pregnancies and from those with complications of preeclampsia or hypertension. Using a regression model approach, we found 123, 85, and 99 loci with high-confidence hypertension-associated, proteinuria-associated, and hypertension- and proteinuria-associated DNA methylation changes, respectively. A gene ontology analysis showed DNA methylation changes to be selecting genes with different biological processes in exposure status. We also found that these differentially methylated regions overlap loci previously reported as differentially methylated regions in preeclampsia. Conclusions: Our findings support prior observations that preeclampsia is associated with changes of DNA methylation near genes that have previously been found to be dysregulated in preeclampsia. We propose that amniotic membranes represent a valuable surrogate fetal tissue on which to perform epigenome-wide association studies of adverse intrauterine conditions.
KW - Amnion
KW - DNA methylation
KW - Genome-wide
KW - HELP-tagging
KW - Hypertension
KW - Preeclampsia
KW - Pregnancy
KW - Sodium bisulfite
UR - http://www.scopus.com/inward/record.url?scp=84977644510&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84977644510&partnerID=8YFLogxK
U2 - 10.1186/s13148-016-0234-1
DO - 10.1186/s13148-016-0234-1
M3 - Article
C2 - 27293492
AN - SCOPUS:84977644510
SN - 1868-7075
VL - 8
JO - Clinical Epigenetics
JF - Clinical Epigenetics
IS - 1
M1 - 67
ER -