TY - JOUR
T1 - A population-health approach to characterizing migraine by comorbidity
T2 - Results from the Mindfulness and Migraine Cohort Study
AU - Sudat, Sylvia E.K.
AU - Jacobson, Alice S.
AU - Avins, Andrew L.
AU - Lipton, Richard B.
AU - Pressman, Alice R.
N1 - Funding Information:
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded by NIH NCCIH grant R01-AT009081.
Funding Information:
The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: RBL serves on the editorial board of Neurology, as senior advisor to Headache, and as associate editor of Cephalalgia; he holds stock options in Biohaven Holdings, Manistee and CtrlM Health. He receives research support from the NIH and FDA. He serves as consultant, advisory board member, has received honoraria from or research support from: Abbvie (Allergan), Amgen, Biohaven, Dr. Reddy’s (Promius), Electrocore, Eli Lilly, eNeura, Equinox, GlaxoSmithKline, Grifols, Lundbeck (Alder), Merck, Pernix, and Teva. He receives royalties from Wolff’s Headache 7th and 8th Edition, Oxford University Press, 2009, Wiley and Informa.
Publisher Copyright:
© International Headache Society 2022.
PY - 2022/10
Y1 - 2022/10
N2 - Background: The heterogeneity of migraine has been reported extensively, with identified subgroups usually based on symptoms. Grouping individuals with migraine and similar comorbidity profiles has been suggested, however such segmentation methods have not been tested using real-world clinical data. Objective: To gain insights into natural groupings of patients with migraine using latent class analysis based on electronic health record-determined comorbidities. Methods: Retrospective electronic health record data analysis of primary-care patients at Sutter Health, a large open healthcare system in Northern California, USA. We identified migraine patients over a five-year time period (2015–2019) and extracted 29 comorbidities. We then applied latent class analysis to identify comorbidity-based natural subgroups. Results: We identified 95,563 patients with migraine and found seven latent classes, summarized by their predominant comorbidities and population share: fewest comorbidities (61.8%), psychiatric (18.3%), some comorbidities (10.0%), most comorbidities – no cardiovascular (3.6%), vascular (3.1%), autoimmune/joint/pain (2.2%), and most comorbidities (1.0%). We found minimal demographic differences across classes. Conclusion: Our study found groupings of migraine patients based on comorbidity that have the potential to be used to guide targeted treatment strategies and the development of new therapies.
AB - Background: The heterogeneity of migraine has been reported extensively, with identified subgroups usually based on symptoms. Grouping individuals with migraine and similar comorbidity profiles has been suggested, however such segmentation methods have not been tested using real-world clinical data. Objective: To gain insights into natural groupings of patients with migraine using latent class analysis based on electronic health record-determined comorbidities. Methods: Retrospective electronic health record data analysis of primary-care patients at Sutter Health, a large open healthcare system in Northern California, USA. We identified migraine patients over a five-year time period (2015–2019) and extracted 29 comorbidities. We then applied latent class analysis to identify comorbidity-based natural subgroups. Results: We identified 95,563 patients with migraine and found seven latent classes, summarized by their predominant comorbidities and population share: fewest comorbidities (61.8%), psychiatric (18.3%), some comorbidities (10.0%), most comorbidities – no cardiovascular (3.6%), vascular (3.1%), autoimmune/joint/pain (2.2%), and most comorbidities (1.0%). We found minimal demographic differences across classes. Conclusion: Our study found groupings of migraine patients based on comorbidity that have the potential to be used to guide targeted treatment strategies and the development of new therapies.
KW - Headache
KW - electronic health record
KW - latent class analysis
KW - real-world data
UR - http://www.scopus.com/inward/record.url?scp=85131426377&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131426377&partnerID=8YFLogxK
U2 - 10.1177/03331024221104180
DO - 10.1177/03331024221104180
M3 - Article
C2 - 35642092
AN - SCOPUS:85131426377
SN - 0333-1024
VL - 42
SP - 1255
EP - 1264
JO - Cephalalgia
JF - Cephalalgia
IS - 11-12
ER -