Project Details
Description
The ability of synapses to change their functional and structural properties in response to activity, called synaptic
plasticity, is essential for experience-dependent adjustments of brain function. A widely expressed mechanism
of synaptic plasticity in the CNS involves long-term changes in neurotransmitter release. Dysregulation of
presynaptic plasticity has been implicated in the pathophysiology of a number of neuropsychiatric conditions,
including cognitive disorders, autism spectrum disorders (ASD), intellectual developmental disabilities, mood
disorders, schizophrenia, epilepsy and drug addiction. Despite significant advancements in the molecular basis
of neurotransmission, exactly how transmitter release is modified in a long-term manner remains largely
unknown. Here, we hypothesize that local presynaptic translation is a highly regulated, activity-dependent
process that mediates functional and structural presynaptic plasticity at both excitatory and inhibitory synapses
in the mature mammalian brain. To test our hypothesis we will utilize a number of complementary approaches
that specifically target the presynaptic neuron. As a model system, we will focus on rodent hippocampal synapses
that express mechanistically similar forms of presynaptic plasticity. We seek to determine the identity of
presynaptic mRNAs that undergo translation and demonstrate their presence in axons, as well as visualize local
protein synthesis in axon terminals (Aim 1). In addition, we will determine the requirements and main properties of
activity-dependent presynaptic remodeling implicated in long-term presynaptic plasticity, including the translational
pathways involved and the role of actin cytoskeletal dynamics (Aim 2). Though mRNA transcripts can be found in
axons, how their translation is controlled remains poorly understood. We will test the hypothesis that presynaptic
FMRP regulates both structural and functional presynaptic plasticity presumably by controlling local presynaptic
protein synthesis (Aim 3). Lastly, we will visualize and characterize BDNF release from axon terminals and test the
hypothesis that BDNF/TrkB signaling mediates structural and functional plasticity and promotes local protein
synthesis in axons. Successful completion of these aims will likely provide substantial insights and may establish
general principles into the mechanisms underlying presynaptic plasticity and its dysregulation in brain disorders.
Status | Active |
---|---|
Effective start/end date | 9/21/20 → 7/31/23 |
Funding
- NATIONAL INSTITUTE OF MENTAL HEALTH: $608,199.00
- NATIONAL INSTITUTE OF MENTAL HEALTH: $574,933.00
- NATIONAL INSTITUTE OF MENTAL HEALTH: $574,933.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.