Identification of new inhibitors of essential functions in M. tuberculosis by high-throughput metabolic profiling

  • Berney, Michael (PI)

Project: Research project

Project Details

Description

Project Summary/Abstract While the emergence of multi-drug resistant tuberculosis raises an urgent need for antimicrobials with new Modes of Action, their discovery remains a major challenge. Many of the techniques to unravel drug Modes of Action rely on low-throughput, time-consuming and target-specific approaches that provide low- dimensional views into the broader functional impact of potential drugs. Together with the Zampieri lab at ETH Zurich, Switzerland, by leveraging CRISPR technology and non-targeted metabolomics, we developed a combined computational/experimental strategy that is based on the comparison of genetic and drug induced metabolic effects and allows to perform high-throughput de novo functional annotations of large compound libraries. Unraveling the mechanistic basis of drug or gene perturbations of thousands of metabolites provides rich multidimensional information complementary to classical phenotypic profiling and can be used to investigate the effect and mode of action of any drug candidate. The overall goal of the present proposal is to achieve functional annotation of 500 anti-TB compounds with known potency but unknown MoA, which will pave the way to new unconventional strategies to eradicate TB. We will build a compendium of metabolic responses of Mtb to essential gene knockdown, transcription factor overexpression and a unique selection of libraries of Mtb growth inhibitors. We will use our custom- developed computational tools to categorize drug action and gene knockdowns according to metabolic profiles, make testable hypothesis about unconventional drug MoA and move prioritized compounds to genetic and biochemical hit validation. An important collateral benefit of our proposed work will be functional annotation of genes with yet unknown function in M. tuberculosis, and an information dense database on gene-drug-metabolic interactions in M. tuberculosis.
StatusFinished
Effective start/end date11/18/2210/31/23

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.